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Abstract. Single and double inclusive cross-sections for gluon jet production from within the triple pomeron
vertex are studied in the reggeized gluon technique in the QCD with N. — oco. It is shown that to satisfy
the AGK rules the vertex has to be fully symmetric in all four reggeized gluons which form the two final
pomerons. The single inclusive cross-sections are found for different cuttings of the triple pomeron vertex.
They sum to the expression obtained by Kovchegov and Tuchin in the color dipole picture. The found double

inclusive cross-sections satisfy the AGK rules.

1 Introduction

In perturbative QCD at small values of x the strong inter-
action can be modelled by the exchange of reggeized gluons
and BFKL pomerons as their bound states. In the limit
of a large number of colors, N, — 0o, the model reduces
to the propagation and triple interaction of pomerons in
the tree diagram approximation. The equations which sum
these diagrams for heavy nucleus targets (A > 1) have
been written both for DIS (BK equation [1-4]) and for
nucleus—nucleus collisions [5]. The solution of these equa-
tions allows one to find the total cross-sections for pro-
cesses like v* A and AB. The next important observables,
which carry much more information about the dynamics,
are inclusive cross-sections to produce gluon jets which are
to hadronize into the observed hadrons. First calculations
of single and double inclusive cross-sections were made
in [6] on the basis of the AGK rules [7]. From them it fol-
lows in particular that in the single inclusive cross-section
the produced gluon jet comes from within the initial BEKL
pomeron before its branchings. Later from the dipole pic-
ture a slightly different expression for the same cross-
section was derived. In it, apart from the above-mentioned
naive AGK contribution, another term appeared, which
could be interpreted as emission from within the triple
pomeron vertex itself [8]. Such a contribution is not prohib-
ited by the AGK rules but was usually neglected as small.
However in perturbative QCD at small « it is of the same
order as the emission from the pomeron. Further analy-
sis performed in [9] in the framework of reggeized gluon
diagrams seemingly discovered many terms in the contri-
bution to production from the vertex (and among them
also the one found in [8]). However the derivation in [9]
was based on certain ad hoc assumptions, so that it was
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stressed there that the derivation was in fact quite heuris-
tic and needed a more detailed study. The present paper,
which is a direct continuation of [9], presents results of this
study.

We find that a more careful analysis of reggeized gluon
diagrams and especially the validity of the AGK rules for
different forms in which their sums may be presented leads
to results which differ from those obtained in [9]. We find
that the triple pomeron contribution in the form used in
that paper (with the so-called diffractive vertex Z) does
not satisfy the AGK rules and only the form with the sym-
metric Bartels vertex V does satisfy them® This circum-
stance radically changes the derivation of the contribution
to jet production from within the triple pomeron vertex.
The found terms for different cuttings of the pomerons
joined by the vertex are as numerous and complicated
as in [9], but in the sum they indeed combine into the
Kovchegov—Tuchin term. Thus the reggeized gluon di-
grams approach to the gluon jet production completely
agrees with the dipole picture. In fact the most convenient
technique combines both approaches and allows us to ob-
tain results in the simplest way. Using it one is able to
easily construct an evolution equation for the four-gluon
amplitude with jet production. One can also show that
contributions which blatantly violate the AGK rules found
for the double inclusive cross-section in [11] are in fact
absent.

2 The AGK rules

We start with the scattering amplitude of some projectile
(e.g. v*) on two scattering centers, which corresponds to

L We highly appreciate our numerous discussions with J. Bar-
tels who has always insisted on this point (see also [10]).
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the triple interaction of BFKL pomerons and is schemat-
ically shown in Fig. 1, where one can also see our nota-
tion for the initial and final momenta p; and p}, i =0, 1, 2.
Both the projectile and two targets are supposed to be
colorless objects like quark—antiquark loops (photons or
onia). In practice this amplitude, multiplied by one half
of the square of the nuclear profile function T'(b), repre-
sents the contribution from the double rescattering in the
nucleus. However, for the problem at hand this circum-
stance is unimportant. We assume that the c.m. energy
s = (po+p1)? = (po + p2)? is large and the transferred mo-
menta t; = (p} — p;)? are finite and therefore much smaller
than s. In fact in the following we shall concentrate on
the forward case, ty = 0, which is of most practical impor-
tance. The ladders represent the initial and two final BFKL
pomerons and the central blob corresponds to the triple
pomeron vertex, which is local in rapidity. Allowing for
the pomerons to be Regge cuts and not simple poles (as
is the case of the BFKL pomeron) and for the two lower
pomerons to have different energies, one gets a representa-

tion for the amplitude [12]:
S1 Jj1—1 So Jjo—1
) (G2

1 s189 d]k
27t M? /H (2m
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The signature factors are defined as

T35 =

|
sin(myj)

(=-m (2)
where for {y one should take j = jo — j1 — j2. As compared
to [12] we have included a factor i for each pomeron since
in the skeleton diagrams one should use elemental scatter-
ing amplitudes multiplied by i. For physical scattering we
are to take s; = sy = s. The function F(j;,t;) corresponds
to the diagram of Fig. 1 in the complex angular momen-
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Fig. 1. Triple pomeron contribution to the 3 — 3 amplitude
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tum representation. It is a real function, which is a product
of three pomerons in the j-representation and the triple

pomeron vertex I':
d2Q1 d2k‘1 d2k3

st Z/ )2 (2m)2

Ffllzga3a4(k1,k27k3,k4|Q17Q2)PQ1 2(J1; k1, k2)
X P33 (jo; k3, ka)Poyby (Jos 41, G2) - (3)

Here P, P, and P; are the initial and two final pomerons, a;
and b; are their color indexes, k; and ¢; are their transverse
momenta, with g1 + g2 = po — pjy, k1 + k2 = p1 — p} and ks +
k4 = pa — pj. Since the pomerons are colorless, the Ps in-
clude a projector onto the colorless state:

(4)

1
Pyyby (031, G2) = N2 l5b1b2P(j0; q1,92)
and similarly for the final pomerons. The normalization is
chosen to include an extra factor \/N2 — 1 into the func-
tion P(q1,p2). This normalization depends on the one cho-
sen for the external sources. In the following, to general-
ize for multiple scattering and relate the pomerons to the
sum of fan diagrams &, we rescale the final pomerons as
P — ¢g*P and the initial pomeron as P — P/g?. Then for
single scattering & = (1) = PT'(b), and the vertex I in (3)
coincides with the vertex in the BK equation.

We first demonstrate that the relation between the
imaginary parts of the amplitude coming from different
cuts trivially follows from the representation (1) with
a real function F'(j;,t;). Note that Im ¢ = i and that for
pomerons in the lowest order ¢ = ir. Armed with these
properties we may calculate the total and partial imagi-
nary parts of the amplitude. Since all non-trivial depen-
dence on energies is contained in signature factors, we
have only to follow their change when taking the relevant
discontinuities.

First we look at the total imaginary part. To find it we
have just to substitute all (s by im, which will result in

a contribution
S1 Jj1—1 So Jjo—1
) (ar)

_2555/11
(5)

M2 Jj-1
X (Q2> F(ji,ti).

d]k
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Partial imaginary parts are corresponding to different cuts.
The diffractive cut corresponds to taking i(y = 27 (just the
discontinuity divided by 1), &; = £ = —7 and dividing the
whole expression by two. Obviously we get

(Im T)4 = —(Im T)tt. (6)
The double cut corresponds to taking i(y =i(; = i(o =27
(again the discontinuities divided by i) and dividing the
whole expression by 2 x 2 (2 for the imaginary part and 2
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for the identity of the two legs). Obviously we get twice the
diffractive cut

(Im T)double — 2(Im T)dif. (7)

Finally single cuts correspond to £y and one of &; 2 substi-
tuted by 27, the other one by —7 multiplying by 2 for the
complex conjugate part and dividing by 2 to pass from the
discontinuity to the imaginary part. As a result we get four
times the diffractive cut with the opposite signs:

(Im T8l = —4(Tm )4, (8)

The sum of these partial contributions is equal to the total
imaginary part, and their relative weights correspond to
the AGK rules.

Note however that what we have just presented is only
a formal derivation of the AGK rules. In fact one has to
be able to identify intermediate states and production am-
plitudes which generate different cuts of the amplitude
in the unitarity relation for the total ImT. This is triv-
ial for the internal gluons in the pomerons themselves,
but not so for the coupling of the pomerons to the ex-
ternal particles and to each other. Such an identification
is not needed when one studies the total amplitude and
the cross-section which it describes, but it becomes a ne-
cessity if one wants to see which particles are produced
from the vertexes describing these couplings. The problem
mostly concerns the double cut in the variables s; and so
in (1), which has to be reinterpreted as a single unitarity
cut.

That this is not generally possible illustrates the dia-
gram shown in Fig. 2, say for a scalar theory with a triple
interaction. It obviously contains the double cut in lower
reggeon energies, but this cut cannot be identified with the
unitarity cut, which cannot pass through both reggeons.
So we have to study the unitarity relation for the ampli-
tude in correspondence with the cuts we have discussed.

Fig. 2. Amplitude which possesses a double cut which is not
unitary
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Let us start from the diffractive cut, which is graphically
shown in Fig. 3a, where also the corresponding interme-
diate states in the unitarity relation for the three par-
ticipating pomerons are shown. The cut drawn through
the three-pomeron vertex is purely symbolical: it is not
possible to interpret the cut vertex I" terms of interme-
diate states for the production amplitudes in a straight-
forward manner. The general formula (1) only tells us
that the cut vertex is a real function independent of the
cutting Ffllgga3a4(k1, ka, ks, kalq1,q2) = I'(1,2,3,4), where
the numbers refer to the final gluons, 1 and 2 in the first
lower pomeron and 3 and 4 in the other one. The dou-
ble cut is shown in Fig. 3b together with its unitarity
content. Again the cut through the vertex is not directly
expressible in terms of intermediate states. One observes
that it corresponds to the interchange of the final glu-
ons 2 and 3 in the vertex: I'(1,3,2,4). However, as men-
tioned, the cut vertex should not depend on the particular
cutting. It should also be symmetric in the pairs of glu-
ons (1,2) and (3,4) due to the properties of the pomeron.
As a result, the vertex function I" has to be completely

a b
1] 1]
_|_ _|_
r | r |
_I |
| |
v —
D N \:>
c d

Fig. 3. a Diffractive, b double, and c,d single cuts and their
unitarity content
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symmetric in all four final gluons 1, 2, 3 and 4. The sin-
gle cut contributions shown in Fig. 3c and d do not imply
any new condition on the vertex function I'. So we con-
clude that the necessary condition for the fulfillment of
the AGK rules for the triple pomeron contribution repre-
sented according to (1) is the complete symmetry of the
triple pomeron vertex in all four final reggeized gluons.
This requirement generalizes the one in the original AGK
derivation that the vertex should not change with different
cuttings.

Note that the contributions to the total imaginary part
of the amplitude T5_,3 can be classified not only by a par-
ticular cutting, diffractive, double or single, but also by
the number of gluons emitted at the vertex rapidity. In
the lowest order it can be zero or unity. So each of the
contributions from a particular cutting can be split in
two:

ImT) = 3 (@7, )
n=0,1

where cut = diffractive, double, single and n is the num-
ber of gluons emitted at the vertex. It is important
that although the sums (9) satisfy the simple AGK rela-
tions (6)—(8), the separate contributions from n =0 and
n = 1 do not, as we shall see in the following.

3 The triple pomeron contribution
in the perturbative QCD

Analysis of reggeized gluon diagrams shows that the am-
plitude with four final reggeized gluons may be repre-
sented in different forms. From the direct study of the
triple discontinuity with two, three and four exchanged
reggeized gluons one finds an expression which is a sum
of the double pomeron exchange and triple pomeron con-
tribution with the so-called diffractive vertex Z [12-14].
However, neither the vertex Z nor the gluon coupling to
the external particles in the double pomeron exchange
contribution is symmetric in all four reggeized gluons 1,
..., 4 (they are only symmetric in the pairs 12 and 34).
So according to the results of the previous section nei-
ther of these two contributions can separately satisfy the
AGK rules. However, these two contributions can be trans-
formed in two others, one of which (the ‘reducible’ part)
has the form of single pomeron exchange and the other
(the ‘irreducible’ part) of a triple pomeron contribution
with a different vertex V', symmetric in all the gluons [12].
Remarkably in the high-color limit this vertex coincides
with the one introduced by Mueller and Patel in the color
dipole model [15], and which represents the pomeron in-
teraction in the hA and AB collisions. Our results show
that it is this vertex for the triple pomeron interaction
which satisfies the AGK rules. Note that this statement
was made rather long ago in connection with the ampli-
tude for the scattering on a single center [10,12]. Our
results generalize it to the scattering on two (or many)
centers.
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For our purpose we only need the vertex projected onto
the incoming pomeron colorless color state:

Z Fffa2a3a4 (klv k27 k37 k4|Q17 Q2)
b
EFa1a2a3a4(k1ak27k37k4|q17QQ) . (10)
This vertex is related to the symmetric Bartels vertex V' by
the relation

g2Fa1a2a3a4 (kla k2, k37 k4|Q1, q2)
1 2

= Q1qgva1a2a3a4<klak2ak37k4|q1aq2) .

) (1)

The vertex V has the following color and momentum struc-
ture:

%1a2a3a4 (k17 k27 k3a k4|CI17 q2)
=0aya50a3a,V (1,2,3,4) + 041030004,V (1,3,2,4)
+ 01040050,V (1,4,3,2). (12)

For brevity we suppress the dependence on the momenta
of the initial pomeron ¢;, g2 common to all the terms and
denote the momenta of the final gluons by their numbers,
so 1 means k; and so on. The function V (1,2, 3,4) is sym-
metric under the interchanges 1 <> 2, 3 <> 4 and 12 < 34.
The whole expression (12) is obviously completely sym-
metric in all four gluons.

The explicit expression for the function V'(1,2,3,4) is
conveniently given in terms of the function G(k1, k2, k3)
introduced in [12] and generalized to the non-forward di-
rection in [16]:

V(1,2,3,4) =" (G(1,23,4)+G(2,13,4) + G(1,24,3)

+G(2,14,3) — G(12,3,4) — G(12,4,3)

~G(1,2,34) — G(2,1,34) + G(12,0,34)) ,
(13)

g2
2

where again for brevity we denote 12 =142 = k; + k5 etc.
The function G has the form

Gk, ko, kslqi, @2) = —g°NeK (ky, ka, ks|qu, g2)
— (2m)%8%(q1 — k1) (w(2) —w(23))
— (2m) 5 (42— ks) (0(2) —w(12))
(14)

Here w(k) is the gluon Regge trajectory and the kernel for
the transition of two gluons into three K is given by

2
K (K1, ko, k3lq1,q3) = (ks +kz2—2i_k3)
4193
+ ks
(k1 —q1)%(ks —q3)?
C(kitke)? (ko hg)?
Gks—q3)?  Gki—q)?

(15)

It conserves momentum, so ki + ko + k3 = q1 + g2.
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Summation over the colors of the final pomerons
in the expression for the amplitude (1) transforms
Fa1a2a3a4 (klv k2, k37 k4|Ql, q2) into

I(k1, ko, k3, kalqi, g2)

2
1
= (N2_1> > Tayajasas (k1. ko, ks, kalqr, g2)
c
_ 1
2

al,as
G B [V(1,2,3,4)

1

e

(V(1,3,2,4)+V(1,4,3,2))]| . (16)

In the high-color limit only the first term remains. The
function F(j;,¢;) in the integrand for the amplitude (1)
becomes

d2q1 kol d2k3
F .i7 i) = F 9 9 ) 9
(-] t ) / (27T)2 (27T)2 (27T)2 (kl k? k3 k‘4|(]1 qQ)

X P1(j1; k1, k2) Pa(j2; ks, ka) P(jo; q1,q2) -
(17)

Note that the resulting vertex I" is no more symmetric in
all the gluons, which is a consequence of an unsymmetri-
cal projection onto the color space of the final reggeons.
Putting in (1) s; = s2 = s, passing to rapidities defined by

S S

=1
y=In, 5

(18)

and substituting the signature factors by their lowest order
values, we obtain for the amplitude the standard expres-
sion

1 qul d2k‘1 d2k3
T = —j r
B g 1827r/ (2m)2 (2m)? (27)? (k1, ko, k3, kalq1, q2)

X Py(y; k1, ko) Pa(y; ks, ka) P(Y —y5q1,q2),  (19)

where the pomerons in the y-representation are defined as

Py = [ Y w1 p(j). (20)

2mi

This amplitude refers to the case when we have a simple
triple pomeron diagram corresponding to scattering on two
centers. A more important case is scattering on many cen-
ters (heavy nucleus) described by a sum of all fan diagrams
made of the BFKL pomerons with their triple interaction.
Apart from the driving term, which is an exchange of a sin-
gle pomeron, it is given by the expression of the same form
as (19) in which the final pomerons are substituted by the
sums of all fans &(y, k1, k2; b) and D(y, ks, kq; b) where b is
the impact parameter.

The expression (19) can be further simplified taking the
limit N, — oo and passing to the coordinate representa-
tion [16]. Here we want only to comment on different parts
of the imaginary part of this amplitude corresponding to
different cuts. They will generally involve different projec-
tions onto the color space of the final pomerons. However,
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due to the symmetry of the vertex I' the final result will
be the same. For instance in the double cut we find the
vertex

1 2
<N2_1> Z Fa1a3a1a3(k17k37k2ak4|q17QQ)~ (21)

a1,a3

However, the symmetry allows one to interchange gluons 2
and 3, and (21) becomes identical to (16). So all contribu-
tions to the imaginary part will contain the same vertex
I'(k1, ko, k3, ka|q1, g2) defined by (16) and so will be given
by the same expression (19) with the factor —i changed to
1, 2 and —4 for the diffractive, double cut and single cut
contributions, respectively.

4 Single inclusive cross-section

As mentioned the total contribution to the amplitude for
scattering on two centers can be presented as a sum of the
amplitude T3_,3, studied in the previous section, and the
reducible part, which is just a pomeron coupled simultan-
eously to the two centers. Our central interest will be the
inclusive cross-section corresponding to the triple pomeron
contribution T3_,3. The contribution from the reducible
part is simpler and will be briefly discussed later. To derive
the single inclusive cross-section for emission of a gluon jet
at rapidity y and of the transverse momentum k we have
to find it in the intermediate states in the unitarity relation
for T5_,3. The amplitude T5_,3 presented by (1) has three
pomeron legs, each having a clear and well-known repre-
sentation in terms of reggeon diagrams. At rapidity yy the
pomerons are joined by the vertex I', whose representation
in terms of reggeon diagrams is not possible. The import-
ant point is that the vertex is local in rapidity belonging
to fixed rapidity yy, unlike the pomerons which are ob-
jects extended in rapidity. From this one concludes that
an intermediate real gluon with rapidity y > yy or y < yy
can only be present in the pomeron legs. Since the struc-
ture of these legs in terms of reggeon diagrams is known,
the corresponding inclusive cross-section can be found by
just “opening” the BFKL chain. However apart from this
pomeron contribution, there also may appear a contribu-
tion at exactly yy from the gluon emission from the vertex
itself. These considerations demonstrate that the inclu-
sive cross-sections satisfy the standard reggeization pat-
tern when the observed particles can be extracted either
from the reggeons or from their joining vertexes.

“Opening” the BFKL chain is described in the coordi-
nate space by inserting the emission operator [17]

4 che L
Vi(r) = O‘k2 AeiT A,

that is, substituting the BFKL Green function at rapidity
interval Y by

(22)

G(Y;r,re) — / d*rG(Y —y;r1, ) Vi (r)Gy : v, 12) .
(23)
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|

( Dy )

Fig. 4. Pomeron diagrams for the single inclu-
sive cross-section on two centers

Fig. 5. Transitions from a 2 to 4, b 3 to 4 and
c 4 to 4 gluons

In this way we find the single inclusive cross-section at
fixed impact parameter b on two centers corresponding to
the emission from the upper pomeron in T5_,3 (see Fig. 4a):

33 (P)
(P) _ (2m)°do
Ty k) = dyd2kd2b

= 2/d2rP(Y—y;r)Vk(r)q5(2) (y;7[b) .
(24)

Here P(Y —y;r) is the initial pomeron in the coordi-
nate representation. The function &) (y;r|b) is the con-
tribution from the double interaction with the nucleus
due to the three-pomeron vertex. In the momentum
representation

a2k A2k
&) (y; g1, q2|b) = T (b) / (27r)12 (QW)Z Pi(y; ky, k)

X Po(y; ks, ka)I'(k1, ko, ks, kalq1,q2) ,
(25)

with ¢; +¢2 = 0. The AGK relations (6)—(8) tell us that
emissions from lower pomerons in @ (Fig. 4b) do not give
any contribution.

Thus we are left with the emission from within the ver-
tex I' corresponding to the diagram shown in Fig. 4c. To
find this contribution it is evidently enough to study the in-
clusive cross-section for the case when the three pomerons
joined at the vertex are taken in the lowest order: the dou-
ble gluon exchange. In this case there is no gluon emis-
sion from inside the pomerons and all gluons come either
from the vertex or from the additional contribution sepa-
rated from the three-pomeron diagram as the mentioned
reducible part in the reggeon diagram technique, or equiv-
alently in the form of Glauber rescattering in the initial
state in the evolution equation for the sum of fans . All we

have to do is to study in the lowest order all the correspond-
ing diagrams with four gluon legs combined into the final
pomerons and locate the observed intermediate gluon in
the appropriate cuts. The number of initial gluons, coupled
to the quark—antiquark loop may be two, three or four.
Correspondingly the diagrams split into three types with
transitions 2 —+ 4,3 — 4 and 4 — 4 gluons.

Typical diagrams for these three cases are shown in
Fig. 5a—c. The upper blob, Dyj, represents the quark—
antiquark loop with two, three or four gluons attached to
it in all possible ways conserving the order of gluons 1, 2,
3 and 4. The final gluons are to be understood as parts
of the lower pomerons in T3 ,3. They are to be combined
into pomerons in two different configurations: the diffrac-
tive one, in which the pomerons are made of pairs (1,2)
and (3,4), and the double cut one with pomerons made of
pairs (1,4) and (2, 3). Note that the pairing (1, 3) and (2, 4)
is prohibited. It is well known that two ladders can couple
to a particle only in the so-called “nested” configuration.
This can also be understood from the kinematical situ-
ation: the rungs in the pomeron ladders do not depend on
the longitudinal variables and so are instantaneous in the
longidudinal directions. Diffractive and double cut configu-
ration allow the relative longitudinal distance between the
two pomerons to be arbitrary, which translates into the in-
tegration of the nuclear density into the profile function. In
the configuration (1,3) (2,4) the two pomerons are in fact
located at the same longitudinal coordinate, which leads
to suppression of this contribution by the inverse of the
large nuclear dimension. The diffractive and double cuts
are made between the gluons 2 and 3 (see Fig. 3a and b).
The single cuts are made in both configurations separat-
ing gluons 1 or 4 (Fig. 3c and d). Actual calculations are
best performed in the coordinate space (although naturally
they are completely equivalent to the calculations in the
momentum space customary in the reggeon diagram tech-
nique). The vertexes for the transitions n — 4 gluons with
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n =2,3,4 can be conveniently represented via the emis-
sion vertexes reggeon — reggeon + particle (Lipatov) and
reggeon — m reggeons + particle (Bartels) which may be
found in [12]. In the coordinate space emission of a gluon of
momentum k at point z; from the quark at point r; by the
Lipatov vertex is described by a factor

k 52(21 —?"1) y

fi(r1) =ki(r1) —ha(r1), o2

i Z1—Iq
21 (21 —11)%

k‘l (?"1) =

hl(rl) = (26)

Similarly fi(rz) refers to the emission from an antiquark
with coordinate ro, and f3(r1) and f5(r2) refer to the con-
jugate amplitude with the emission point zs. Emission by
the Bartels vertex is described by a factor
Bi(r1,x) = hi(r) (52(17—7"1)—52(13—2'1)) , (27)
where x is the coordinate of splitting of the first final gluon.
The rest of the final gluons are to be located at z; .
Following [8] we present the result for this lowest order
inclusive cross-section in the form of the integral over the
interquark distance in the loop ri2 =r; —ry and gluon
emission points in the direct and conjugate amplitudes:

_ (2m)3doy
Jow k)= 4 d2razp

= g°N.T?(b) / d’r13d%z d%zpe

X I(Tl,Tg,Zl,Zg)V4P(O) (7‘12) . (28)
Here P (r) is the upper pomeron in the lowest order. Ap-
plication of V4 removes its legs and leaves only the quark—
antiquark loop in the coordinate representation Dag (7).
The integrand I is a sum of contributions from the diffrac-
tive, double and single cuts:
= IdifT+Idouble +Isingle (29)
Each of them is just the sum of the contributions from the
appropriately cut diagrams with the statistical weight fac-
tors 2, 4 and —4 for the diffractive, double and single cuts
respectively.
To write down the contributions we use the short-

hand notation for the lower pomerons (we consider them
identical):

XEP(Zl—I'l), YEP(Zl—I‘Q), UEP(ZQ—I‘l),
VEP(ZQ—I'Q), ZEP(Zl—Zg), REP(I‘l—I'Q).
(30)

As mentioned the pomerons are to be taken in the lowest
order (two-gluon exchange) and so do not depend on the
rapidity.

Simple although somewhat tedious calculations give
the following results for the contributions from the diffrac-
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tive, double and single cuts:

I =2(hy(r1) = ha(r2)) (R (r1) — h3(r2))

% (X+Y ~R)(U+V —R),

= (hi(r1) = ha(r2))(h5(r1) — h3(ra))

x [42°42(XV+YU)-3Z(X+Y +U+V)]

(31)
Idouble

+hi(r))h(r) [UR+3V —U)+ X (R+3Y — X)]
+hi(ro)hs(re) [V(R+3U-V)+Y(R+3X -Y)]
— ha(r1)h3(ro) [U(R4+3V —U)+Y(R+3X —Y)]
— ha(ro)hi(r1) [V(R+3U = V) + X (R+3Y — )(()]),
32

IR = (hy(r1) = ha(r2)) (B3 (r1) — B (r2))
< (3Z[X+Y+U+V]
—2XU-2YV —4XV —4YU}

+ (ha(r1)U — ha(r2)V)(R3(r1) — h3(r2))
x [-2R—=3(U+V)]
+ (ha(r1) = ha(r2)) (A3 (r1) X — h3(r2)Y)
x [-2R—3(X +Y)]
+hi(r1)hi(r1)R (2V +3U +2Y +3X
+ h1(r2)hs(r2) R (2U + 3V +2X +3Y
)R (
)R (

2(r)R )
2(r2) R )
—hl(’l“l h; TQ)R (2V+3U+2X+3Y)
— hi(ra)h5(r1)R (2U 4+ 3V +2Y + 3X)
(

1

—2R? (h1(r1) + ha(r2)) (B3 (r1) + h3(r2)) . (33)
Remarkably in the sum of these three contributions

nearly all the terms cancel and one gets a comparatively

simple expression:

1
+4hy(r2)hs(r2) (22 —Y? = V?)
—4hy(r1)h3(r2) (R*+ 2% -Y? - U?)
—4hy(ro)hy(r1) (R*?+ 22— X*—V?) . (34)

It agrees with the expression found in the Glauber ap-
proach in [8]

As mentioned before, to find the contribution from the
vertex one has to subtract from this expression the term
which comes from the reducible part. In the coordinate
representation this part comes from the contribution of the
double scattering in the Glauber expression for the initial
state:

i [ @ PO WPy, (3)

where the upper pomeron is a developed one, but the two
lower ones are to be taken in the lowest order. The contri-
bution to the inclusive cross-section is obtained by opening
the upper pomeron (and multiplying the result by 2 for the
twice imaginary part). The found inclusive cross-section
can again be represented in the form (28) with an integrand

pei=

5 (36)
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This brings us to the final contribution from the vertex,
which has the form (28) with an integrand

1 1
= I:
2 2

Ivertex (IdiH+Idouble+Isingle) . (37)
The three terms in (37) may be related to the expressions
for the vertex cut in different ways: diffractive, double cut
or single cut. We admit that such an interpretation has
a somewhat heuristic character. For the single inclusive
cross-section it is not needed: only a sum of these three
terms appears in it. However, the study of the double inclu-
sive cross-section, as we shall see in the following, requires
knowledge of the vertex separately for different cuttings.
Then we shall use the interpretation following from (37).

The simple form of I allows one to do the integrations
over z1 and z and present the inclusive cross-section from
the vertex in a simpler form similar to (28) [8]:

IOk = =120) [ @rPOVEPOEP. (33)

This contribution has been found for the case when
all pomerons are taken in the lowest order, without evo-
lution. However from the structure of the triple pomeron
diagram it immediately follows that evolution just restores
all orders for all the three pomerons, so that the inclusive
cross-section coming from emission from the vertex is given
by the same expression (38) with the pomerons taken fully
evolved, the upper one up to Y — y and the two lower ones
up to y. We have

21)%do(V)

dyd2kd2b

=_ / der(Y —y; T)Vk(?”)[@(l)(% T|b)]2 )
(39)

TV (g k) =

where (1) corresponds to a single interaction with the
nucleus:
o (y;r|b) = P(y; )T (b). (40)
Passing to scattering on many centers we have to take
into account that due to the AGK cancellations ony the
contributions from the uppermost pomeron and vertex re-
main. So to obtain the inclusive cross-section we have only
to appropriately change the lower legs in the contributions
from the single and double scattering. In this way we get
the final inclusive cross-section as

_ (27)3de
TW:R) = 4y azkaz

z/d2r1d2rP(Y—y;7“)Vk(7°)

x (28(y; r[b) — P*(y; b)) - (41)
The second term corresponds to emission from the vertex
and agrees with the result of [8].

Note finally that integrating the contributions found
from different cuts over k we obtain the total imaginary
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parts of the amplitude due to emission of a gluon from the
vertex, divided by s and so coinciding with the correspond-
ing cross-sections oy :

oM = 40, (hy(r1) — hi(r2)) 2 (X +Y — R)?, (42)
oo = 20 {203 (r1) (X R+5XY — X?)
+2h3(r2)(YR+5XY —Y?)
—2h1(r1)h1(r2)
x (R(X+Y)+10XY - X?>-Y?)}, (43)

oy = 20, {203 (1) (R(X +2Y) —TXY —4X2 - Y?)
+2h3(rs) (R2X+Y)—7XY — X*—4Y?)
+ 2h1(7“1)h2(7“2)

x (BR(X+Y)+14XY +5X>+5Y°)} . (44)
One observes that they do not satisfy the AGK rela-
tions (6)—(8). Only summed with the cross-sections with-
out emission of a gluon from the vertex they do satisfy
these relations.

5 Evolution equation for the inclusive
cross-section on two centers

Evolution of the inclusive cross-section with rapidities fol-
lows directly from the representation (28) and the evo-
lution equations for P(Y —y;r) and ®§(y;r|b). At a fixed
number of centers however the structure of the inclusive
cross-section allows one to construct an evolution equation
directly for it, as an equation which describes evolution
of the lower legs. We shall limit ourselves to the inclusive
cross-section on two centers (two lower pomerons).

As mentioned, the amplitude T3_,3 itself can be split
into a reducible and irreducible part. Separating from the
irreducible part the nuclear sources with the final gluon
propagators one obtains the irreducible four-gluon ampli-
tude DELI) studied in [12,18]. It satisfies an equation ob-
vious from the representation (1), which can be written
symbolically as

( aay + H4) D (y)=TP(y). (45)
Here H, is the Hamiltonian for four reggeized gluons which
form the final pomerons. P(y) is the upper pomeron. I" is
the three-pomeron vertex as an operator acting from the
space of the two initial gluons into the space of the four
final gluons. In the limit N, — co the Hamiltonian H4 con-
tains only the BFKL interactions between the gluons in-
side each of the two pomerons. The solution of (45) can
be achieved by applying to the right-hand side the Green
function for four reggeized gluons:

I
D)= [ Cuty-)rPW).  (10)
In the limit N, — oo G4 is just a product of two indepen-
dent BFKL Green functions for the two pomerons. Attach-
ing the sources to (46) one restores the representation (1).
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Passing to the inclusive cross-section (41), for two
scattering centers we can introduce a similar ampli-
tude Dy) (Y,yl|k), which is obtained by separating from
the cross-section the two nuclear sources and changing the
direction of the evolution, so that the nucleus is at rapid-
ity Y, the splitting occurs at y, and the projectile is at zero
rapidity. From (41) we find

DV (v, ylk) = / dy'G4(Y —y')TP(y', y|k)

= Ga(Y —y)ViP(y) , (47)
where P(Y, y|k) is an opened pomeron:
PY,ylk) = G(Y —y)ViP(y) . (48)

Note that here V}, acts exclusively in the two-gluon space
whereas in (47) it acts from the two-gluon into four-gluon

(1

space. Obviously D, ' (Y, y|k) satisfies the equation

( 2 +H4) DY, ylk) = TPV, ylk) — 6(Y — y)ViP(y).
(49)

Indeed applying the Green function G4 to the right-
hand side one obtains (47). Comparing (49) with (45)
one observes that the equations are actually quite similar
at Y # y. The role of the second term describing emission
from the vertex is only to supply the initial condition for
the evolution at Y = y:

D (y,ylk)) = —G(0)Vi P(y). (50)

6 Double inclusive cross-section

Now we study the double inclusive cross-section for emis-
sion of two jets with rapidities and transverse momen-
ta y1,k and ya,l. We assume y; > yo (and in fact in the
BFKL kinematics y; > y2). Both gluons may come from
within the pomerons. The AGK rules tell us that the only
contributions of this sort which remain are from either two
emissions from the upper pomeron or from emissions from
the both lower pomerons immediately after the first split-
ting shown in Fig. 6a and b. These are the standard AGK
contributions.

Now we pass to contributions which involve emission
from the vertex. Clearly in the lowest order there cannot
occur two emissions from the vertex at the same rapidity.
According to the AGK rules we are left with two cases:
either the faster gluon (rapidity y1) is emitted from the
uppermost pomeron and the slower one from the first split-
ting vertex (Fig. 6¢) or the faster gluon is emitted from the
uppermost vertex and the slower one from one of the lower
pomerons immediately after the first splitting (Fig. 6d).

The first case is simple. In this case the lower pomerons
can be cut in any way and the contribution from the ver-
tex includes all three terms corresponding to diffractive,
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Fig. 6. Pomeron diagrams for the double inclusive cross-
section on two centers

double and single cuts, which combine into the final ex-
pression (38) for emission from the vertex. So the double
inclusive cross-section in this case is obtained from (38) by
just additionally ‘opening’ the upper pomeron:

(27)8do
dy1d?kdy,d?1d2b

:—/d2rd2r/P(Y—y1;r)Vk(7“)
X Gy1 = ya; 71" Vi (1) (y2; 7'[b) -
(51)

The second case is more complicated. Now the lower
pomeron which emits the gluon must be cut. This excludes
the diffractive part of the contribution to the emission from
the vertex and instead of the simple expression (38) we
have to use the sum of only double and single cuts for the
vertex emission. The integrand in (28) as a result is more
complicated:

I = (1/2)(Idouble +Isingle) _ (1/2)(1_ Idif) '

J(l)(yl, k‘; Yo, 57‘/l) =

(52)

By shifting variables z; and z, one can present the contri-
bution to emission from the vertex from only the diffractive
cut in the form

JW(y, k) =T2(b) / d*rd?rid*roPi(y, 1) Pa(y, 72)
x P(Y —y, )T (ry, malr) . (53)

The emission vertex I ,S“f(rl, ro|r) can be presented via the
kernel K, see (15), in which the momenta are substituted
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for by coordinates (not the Fourier transform!):

L (r1,malr) = g*Nee ™ S T2) LK (ryry 70 = 20,711, 1)

—e MK (r, 71 412, —1|r1,72)

—52(r—r1)/d2r’2K(r,r1 +1h—2r,7|r, 7h)

—(52(7“—7“2)/d2r’1K(r,r’1,7“2—2r,r|r’1,7“2)
1

+ 252(7“—7“1)(52(7“—7“2)

></d2rid2r’2K(r,r/1+7"'2—27“,7“|7“'1,7"’2)} :
(54)

The double inclusive cross-section with emission of the
fastest gluon jet from the vertex and the other from the
lower pomeron will be given by ‘opening’ in (38) the lower
pomeron and subtracting from the contribution from the
vertex the diffractive cut part:

T 1 kie,) == [ PV =y, )V (01l
X G(yr —yo;r, " )Vi(r")B(y2; 7'|b)
- / d?rd?ryd?ry d*ryP(Y —y1,7)

x T (ry, ro, )B(y; 72 b)G(y1 — yo371,7)
X Vi(r])D(y2; 1) + (11 <> 12) . (55)

7 Conclusions

We have established that the AGK rules can only be satis-
fied if the triple pomeron vertex is a fully symmetric func-
tion in all four reggeized gluons which form the two out-
going pomerons. This selects the symmetric Bartels ver-
tex V as a vertex for the triple pomeron amplitude obeying
the AGK rules. The total amplitude for the scattering on
two centers thus splits into this triple pomeron part and
a single pomeron exchange one, both satisfying the AGK
rules in their own way (the latter trivially). The unitarity
content for the triple pomeron amplitude allows one to de-
termine the contribution from gluon emissions from inside
the pomeron in a straightforward manner. The contribu-
tion from the vertex emission can be derived neglecting
the evolution of the pomerons and summing the relevant
reggeized gluon diagrams. For the single inclusive cross-
section this leads to the result obtained in [8] from the
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dipole picture. The ‘opened’ triple pomeron vertex describ-
ing gluon emission from it is found to depend on the nature
of the cut through it, which point was mentioned when the
AGK rules were derived in [7]. As a result, in the double
inclusive cross-section with the slower gluon emitted after
the splitting the cut opened vertex is different and more
complicated than in the single inclusive cross-section, since
the contribution from the diffractive cut has to be dropped.
Still the fundamental AGK properties are found to be valid

also for the double inclusive cross-section, so that the con-
tribution from the upper pomeron and the one after the
first branching claimed in [11] does not appear.

As a byproduct we constructed an evolution equation
for the single inclusive cross-section on two centers as
a function of the overall rapidity. This equation may be
helpful in generalizing to the case of finite N., when the
final pomerons interact between themselves.
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